- This image provided by the European Southern Observatory shows a new near-infrared image of the R136 cluster, obtained at high resolution with the MAD adaptive optics instrument at the ESO's Very Large Telescope which provides unique details of its stellar content. At birth, the three brightest stars each weighed more than 150 times the mass of the Sun.
- Image Credit: AP
London: A huge ball of brightly burning gas drifting through a neighboring galaxy may be the heaviest star ever discovered - hundreds of times more massive than the sun, scientists said Wednesday after working out its weight for the first time.
Those behind the find say the star, called R136a1, may once have weighed as much as 320 solar masses. Astrophysicist Paul Crowther said the obese star - twice as heavy as any previously discovered - has already slimmed down considerably over its lifetime.
In fact, it's burning itself off with such intensity that it shines at nearly 10 million times the luminosity of the sun.
"Unlike humans, these stars are born heavy and lose weight as they age," said Crowther, an astrophysicist at the University of Sheffield in northern England. "R136a1 is already middle-aged and has undergone an intense weight loss program."
Crowther said the giant was identified at the center of a star cluster in the Tarantula Nebula, a sprawling cloud of gas and dust in the Large Magellanic Cloud, a galaxy about 165,000 light-years away from our own Milky Way.
The star was the most massive of several giants identified by Crowther and his team in an article in the Monthly Notices of the Royal Astronomical Society.
While other stars can be larger, notably the swollen crimson-colored ones known as red giants, they weigh far less.
Still, the mass of R136a1 and its ilk means they're tens of times bigger than the Earth's sun and they're brighter and hotter, too.
Surface temperatures can surpass 40,000 degrees Celsius (72,000 degrees Fahrenheit), seven times hotter than the sun. They're also several million times brighter, because the greedy giants tear through their energy reserves far faster than their smaller counterparts.
That also means that massive stars live fast and die young, quickly shedding huge amounts of material and burning themselves out in what are thought to be spectacular explosions.
"The biggest live only 3 million years," Crowther said. "In astronomy that's a very short time."
Small lifespans are one of several reasons why these obese stars are so hard to find. Another is that they're extremely rare, forming only in the densest star clusters.
Astronomers also have a limited range in which to look for them. In clusters that are too far away, it isn't always possible to tell if a telescope has picked up on one heavyweight star or two smaller ones in close proximity.
Appreciatte you blogging this
ReplyDelete